ggplot2-plotly|让你的火山图“活”过来
参考:https://mp.weixin.qq.com/s?__biz=MzIyNDI1MzgzOQ==&mid=2650394088&idx=1&sn=37b0bffaebbe6f60969f34af26f7924b&chksm=f01caf08c76b261eb8811a59a5f5a59790c3ee2306b4c8b6f5771ac02d2e2eaa9c1ff2765cfb&scene=21#wechat_redirect

火山图(Volcano Plot)常用于展示基因表达差异的分布,横坐标常为Fold change(倍数),越偏离中心差异倍数越大;纵坐标为P value(P值),值越大差异越显著。得名原因也许是因为结果图像火山吧
一 载入R函数包及数据集
library(ggplot2)
data <- read.csv("火山图.csv",header=TRUE,row.names = 1)
head(data) #查看数据类型,主要有P值,Fold change和基因ID即可。

二 ggplot2绘制火山图
2.1 绘制简单的火山图–点图
ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val))) +
geom_point(alpha=0.8, size = 1)

和文献中的差距较大,以下几个方面可改进:
A:上下调基因的区分;
B:横轴,纵轴的阈值线;
C:重点基因的标示。
2.2 细节优化火山图
1)根据阈值设定上下调基因
新增change列,利用ifelse函数添加基因的上下调情况,color进行区分,然后使用geom_hline() 和 geom_vline( )参数添加阈值线,
data$change <- as.factor(ifelse(data$adj.P.Val < 0.01 & abs(data$logFC) > 1,ifelse(data$logFC > 1,'UP','DOWN'),'NOT'))

2)添加阈值线 使用geom_hline() 和 geom_vline( )参数添加阈值线
ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +
geom_point(alpha=0.8, size = 1) +
theme_bw(base_size = 15) +
theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +
geom_hline(yintercept=2 ,linetype=4) +
geom_vline(xintercept=c(-1,1) ,linetype=4 ) +
scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT"))

3) 标示重点显著差异基因
上图是不是有点像了,新增sign列,利用ifelse函数添加重点显著差异基因,然后使用geom_text参数添加到图上,
data$sign <- ifelse(data$adj.P.Val < 0.001 & abs(data$logFC) > 2.5,rownames(data),NA)
ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +
geom_point(alpha=0.8, size = 1) +
theme_bw(base_size = 15) +
theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +
geom_hline(yintercept=2 ,linetype=4) +
geom_vline(xintercept=c(-1,1) ,linetype=4 ) +
scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +
geom_text(aes(label = sign), size = 3)

4) 解决基因名重叠问题
基本和paper一致,但是因为差异表达基因太多,存在重叠情况,现使用R语言的ggrepel包解决标签太多导致的重叠问题。
library(ggrepel)
ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +
geom_point(alpha=0.8, size = 1) +
theme_bw(base_size = 15) +
theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank()) +
scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +
geom_label_repel(aes(label=sign), fontface="bold", color="grey50", box.padding=unit(0.35, "lines"), point.padding=unit(0.5, "lines"), segment.colour = "grey50")

5) 标示感兴趣的基因的表达情况
将我们感兴趣的基因添加到数据的LABEL列中,假设以下几个基因是我们重点关注的基因,单独查看以下基因的表达情况

ggplot(data = data, aes(x = logFC, y = -log10(adj.P.Val), color = change)) +
geom_point(alpha=0.8, size = 1) +
theme_bw(base_size = 15) +
theme(panel.grid.minor = element_blank(),panel.grid.major = element_blank() ) +
scale_color_manual(name = "", values = c("red", "green", "black"), limits = c("UP", "DOWN", "NOT")) +
geom_label_repel(aes(label=LABEL), fontface="bold", color="grey50", box.padding=unit(0.35, "lines"), point.padding=unit(0.5, "lines"), segment.colour = "grey50")

呐,到这里除了数据不一样,基本实现了文献中的火山图,是不是以为到这就结束了?NO!NO!NO! 实现上述静态的就可以发paper去了!
但是,,,
汇报展示的时候,如果能动态交互式的展示所有显著基因的FC值和P值,是不是更酷炫!
三 plotly绘制交互式火山图
1)plot_ly函数画散点图
library(plotly)
plot_ly(data,x = ~logFC, y = ~-log10(adj.P.Val),text = ~sign, type = 'scatter', mode = 'markers')
会弹出一个网页,然后可以交互式的展示每个点的FC值和P值。

那可不可以在“paper”级静态火山图的基础上,实现交互式呢?当然可以!!!

四,参考资料
请关注“恒诺新知”微信公众号,感谢“R语言“,”数据那些事儿“,”老俊俊的生信笔记“,”冷🈚️思“,“珞珈R”,“生信星球”的支持!