【DS】R的整洁交叉验证教程
笔者邀请您,先思考:
1 超参数如何调整和优化?
介绍
这篇文章将使用{tidymodels}软件包集合中的几个软件包,即{recipes},{rsample}和{parsnip}以整洁的方式来训练随机森林。 我还将使用{mlrMBO}来调整随机森林的超参数。
设置
让我们加载所需要的包:
1library("tidyverse")
2library("tidymodels")
3library("parsnip")
4library("brotools")
5library("mlbench")
加载包含在mlrbench包中的数据:
1data("BostonHousing2")
我将训练一个随机森林来预测房价,这是cmedv列:
1head(BostonHousing2)
仅保留相关列
1boston <- BostonHousing2 %>%
2 select(-medv, -town, -lon, -lat) %>%
3 rename(price = cmedv)
我移除town, lat和lon列,因为tract列中包含的信息已经足够了。
为了训练和评估模型的性能,我将数据分成两部分。 一个数据集,我称之为训练集,将在下面进一步分为两个。 我不会触摸第二个数据集,测试集,直到最后。
1train_test_split <- initial_split(boston, prop = 0.9)
2housing_train <- training(train_test_split)
3housing_test <- testing(train_test_split)
我想训练一个随机森林来预测房屋的价格,但是随机森林有所谓的超参数,这些参数是无法从数据中估算或学习的参数。相反,这些参数必须由分析师选择。为了选择它们,您可以使用看起来表现良好的文献中的值(如在宏观经济学中完成)或者您可以进一步将训练集拆分为两个,创建超参数网格,在一部分数据中对网格中的所有值训练模型,并在第二部分数据上对比模型的预测。然后,您将坚持使用性能最佳的模型,例如,具有最低RMSE的模型。问题是,您无法仅使用一个值来估计RMSE的真实值。这就像你想通过从人口中抽取一个单一的观察来估计人口的高度。你需要更多的观察。为了给出一组超参数的RMSE的真实值,而不是做一次拆分,我会做30次,然后计算平均RMSE,这意味着我对为超参数的每个值的组合训练30个模型有兴趣。
首先,让我们使用{rsample}包中的mc_cv()函数再次分割训练数据。该函数实现蒙特卡罗交叉验证:
1validation_data <- mc_cv(housing_train, prop = 0.9, times = 30)
2
validation_data是什么样的?
1validation_data
让我们进一步往下看:
1validation_data$splits[[1]]
第一个值是第一个数据集的行数,第二个值是第二个数据集的行数,第三个值是原始数据集的行数。
我们应该如何称呼这两个新数据集? {rsample}的作者Max Kuhn谈到了分析和评估集:

现在,为了继续,我需要预处理数据。 我将分三步完成。 第一步和第二步用于标准化数值变量,第三步将字符和因子变量转换为虚拟变量。这是必要的,因为我将训练一个随机森林,它不能直接处理因子变量。 让我们定义一个配方来做到这一点,并从预处理测试集开始。 我在配方周围编写了一个包装函数,因为我需要将这个配方应用于各种数据集:
1simple_recipe <- function(dataset){
2 recipe(price ~ ., data = dataset) %>%
3 step_center(all_numeric()) %>%
4 step_scale(all_numeric()) %>%
5 step_dummy(all_nominal())
6}
定义配方后,我可以使用prep()函数,该函数从数据中估算处理数据所需的参数。 例如,对于中心化,prep()估计平均值,然后从变量中减去平均值。 使用bake(),然后将估算值应用于数据:
1testing_rec <- prep(simple_recipe(housing_test), testing = housing_test)
2test_data <- bake(testing_rec, newdata = housing_test)
3
在使用prep()和bake()之前分割数据很重要,因为如果没有,您将使用prep()步骤中测试集的观察结果,从而将测试集中的知识引入训练数据中。 这称为数据泄漏,必须避免。这就是为什么有必要首先将训练数据分成分析集和评估集,然后分别预处理这些数据集。 但是,validation_data对象现在不能与recipe()一起使用,因为它不是数据框。 不用担心,我只需编写一个函数,从validation_data对象中提取分析集和评估集,应用预处理,训练模型,并返回RMSE。 这将是一个重要的函数,是分析的核心。
但在此之前,让我们运行一个简单的线性回归作为基准。 对于线性回归,我不会使用任何CV,所以让我们预处理训练集:
1trainlm_rec <- prep(simple_recipe(housing_train), testing = housing_train)
2trainlm_data <- bake(trainlm_rec, newdata = housing_train)
3linreg_model <- lm(price ~ ., data = trainlm_data)
4broom::augment(linreg_model, newdata = test_data) %>%
5 rmse(price, .fitted)
6
broom :: augment()将预测以新列.fitted添加到test_data中。 我不会在随机森林中使用这个技巧,因为我将使用{ranger}的随机森林没有augment()方法。 我会自己将预测添加到数据中。 我不会在随机森林中使用这个技巧,因为我将使用{ranger}的随机森林没有augment()方法。 我会自己将预测添加到数据中。
好的,现在让我们回到随机森林并编写这个强大的函数:
1my_rf <- function(mtry, trees, split, id){
2
3 analysis_set <- analysis(split)
4
5 analysis_prep <- prep(simple_recipe(analysis_set), training = analysis_set)
6
7 analysis_processed <- bake(analysis_prep, newdata = analysis_set)
8
9 model <- rand_forest(mtry = mtry, trees = trees) %>%
10 set_engine("ranger", importance = 'impurity') %>%
11 fit(price ~ ., data = analysis_processed)
12
13 assessment_set <- assessment(split)
14
15 assessment_prep <- prep(simple_recipe(assessment_set), testing = assessment_set)
16
17 assessment_processed <- bake(assessment_prep, newdata = assessment_set)
18
19 tibble::tibble("id" = id,
20 "truth" = assessment_processed$price,
21 "prediction" = unlist(predict(model, new_data = assessment_processed)))
22}
23
rand_forest()函数可从{parsnip}包中获得。 该软件包为许多其他机器学习包提供了统一的接口。 这意味着不必学习range()和randomForest()的语法,而且你可以简单地使用rand_forest()函数并将引擎参数更改为你想要的那个(ranger,randomForest等)。
我们试试这个函数:
1results_example <- map2_df(.x = validation_data$splits,
2 .y = validation_data$id,
3 ~my_rf(mtry = 3, trees = 200, split = .x, id = .y))
4
1head(results_example)
我现在可以在mtry = 3和trees = 200时计算RMSE:
1results_example %>%
2 group_by(id) %>%
3 rmse(truth, prediction) %>%
4 summarise(mean_rmse = mean(.estimate)) %>%
5 pull
随机森林的RMSE已经低于线性回归。 现在的目标是通过调整mtry和trees超参数来降低此RMSE。 为此,我将使用{mlrMBO}包中实现的贝叶斯优化方法。
贝叶斯超参数优化
我将重用上面的代码,并定义一个函数,该函数执行从预处理到返回我希望通过调整超参数以最小化RMSE的度量:
1tuning <- function(param, validation_data){
2
3 mtry <- param[1]
4 trees <- param[2]
5
6 results <- purrr::map2_df(.x = validation_data$splits,
7 .y = validation_data$id,
8 ~my_rf(mtry = mtry, trees = trees, split = .x, id = .y))
9
10 results %>%
11 group_by(id) %>%
12 rmse(truth, prediction) %>%
13 summarise(mean_rmse = mean(.estimate)) %>%
14 pull
15}
16
这正是之前的代码,但它现在返回RMSE。 让我们尝试使用之前的值的函数:
1tuning(c(3, 200), validation_data)
让我们画出mtry=3和trees从200到300的RMSE值,这需要一些时间,因为我需要100次评估这个成本函数。 如果评估函数是简单的,我可以通过改变mtry的值来制作3D图,但是如果评估函数的简单,我会进行详尽的网格搜索以找到超参数而不是使用贝叶斯优化。
1plot_points <- crossing("mtry" = 3, "trees" = seq(200, 300))
2
3plot_data <- plot_points %>%
4 mutate(value = map_dbl(seq(200, 300), ~tuning(c(3, .), validation_data)))
1plot_data %>%
2 ggplot(aes(y = value, x = trees)) +
3 geom_line(colour = "#82518c") +
4 theme_blog() +
5 ggtitle("RMSE for mtry = 3")

对于mtry = 3,最小值似乎在255左右。最小化的函数根本不是平滑的。
我现在按照arxiv论文中的代码来运行优化。 我想我得到了论文的要点,但我还不了解一切。 目前,我目前仍在试验该库,但据我所知,一个更简单的模型,称为代理模型,用于寻找有希望的点,并在这些点评估函数的价值。 这似乎与Gourieroux,Monfort,Renault中描述的间接推理方法有些相似(在精神上)。
让我们首先加载包并创建要优化的函数:
1library("mlrMBO")
2fn <- makeSingleObjectiveFunction(name = "tuning",
3 fn = tuning,
4 par.set = makeParamSet(makeIntegerParam("x1", lower = 3, upper = 8),
5 makeIntegerParam("x2", lower = 50, upper = 500)))
此函数基于我之前定义的函数。 要优化的参数也被定义为它们的界限。 我在在3到8搜索mtry,在50到500搜索trees。
现在是我没有完全理解的部分。
1# Create initial random Latin Hypercube Design of 10 points
2library(lhs)# for randomLHS
3des <- generateDesign(n = 5L * 2L, getParamSet(fn), fun = randomLHS)
我认为这意味着这10个点是用于启动整个过程的点。 我不明白为什么他们必须从超立方体中采样,但没关系。 然后我选择代理模型,随机森林,并预测标准误差。 在这里,我也不太明白为什么标准错误可以是一个选项。
1# Specify kriging model with standard error estimation
2surrogate <- makeLearner("regr.ranger", predict.type = "se", keep.inbag = TRUE)
这里我定义了一些选项:
1# Set general controls
2ctrl <- makeMBOControl()
3ctrl <- setMBOControlTermination(ctrl, iters = 10L)
4ctrl <- setMBOControlInfill(ctrl, crit = makeMBOInfillCritEI())
这是优化部分:
1# Start optimization
2result <- mbo(fn, des, surrogate, ctrl, more.args = list("validation_data" = validation_data))
3result
因此推荐的参数mtry为6,trees为381。 RMSE的值低于之前,等于0.393。 现在让我们用这个值训练训练数据上的随机森林。 首先,我预处理训练数据:
1training_rec <- prep(simple_recipe(housing_train), testing = housing_train)
2
3train_data <- bake(training_rec, newdata = housing_train)
4
现在让我们训练我们的最终模型并预测价格:
1final_model <- rand_forest(mtry = 6, trees = 381) %>%
2 set_engine("ranger", importance = 'impurity') %>%
3 fit(price ~ ., data = train_data)
4
5price_predict <- predict(final_model, new_data = select(test_data, -price))
让我们将数据转换回来,并将预测的价格与真实的价格进行直观比较:
1cbind(price_predict * sd(housing_train$price) + mean(housing_train$price),
2 housing_test$price)
现在我们来计算RMSE:
1tibble::tibble("truth" = test_data$price,
2 "prediction" = unlist(price_predict)) %>%
3 rmse(truth, prediction)
非常好。
希望你喜欢! 如果您发现此博客文章有用,您可能想在Twitter上关注我的博客帖子更新并给我买浓咖啡。
原文链接:
https://www.brodrigues.co/blog/2018-11-25-tidy_cv/
内容推荐
数据人网:数据人学习,交流和分享的平台,诚邀您创造和分享数据知识,共建和共享数据智库。
请关注“恒诺新知”微信公众号,感谢“R语言“,”数据那些事儿“,”老俊俊的生信笔记“,”冷🈚️思“,“珞珈R”,“生信星球”的支持!