python 学习之 pandas 的 DataFrame 及索引对象
点击上方关注“公众号”

1引言
分享 pandas 的 DataFrame 及 索引对象 相关基础知识。
2DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字 符串、布尔值等)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共用同一个索引)。DataFrame 中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。
建 DataFrame 的办法有很多,最常用的一种是直接传入一个由等长列表或 NumPy 数组组成的字典
:
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
'year': [2000, 2001, 2002, 2001, 2002, 2003],
'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
frame = pd.DataFrame(data)
结果 DataFrame 会自动加上索引(跟 Series 一样),且全部列会被有序排列:
In [45]: frame
Out[45]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
5 3.2 Nevada 2003
如果你使用的是 Jupyter notebook,pandas DataFrame 对象会以对浏览器友好的 HTML 表格的方式 呈现。
对于特别大的 DataFrame,head 方法会选取前五行:
In [46]: frame.head()
Out[46]:
pop state year
0 1.5 Ohio 2000
1 1.7 Ohio 2001
2 3.6 Ohio 2002
3 2.4 Nevada 2001
4 2.9 Nevada 2002
如果指定了列序列,则 DataFrame 的列就会按照指定顺序进行排列:
In [47]: pd.DataFrame(data, columns=['year', 'state', 'pop'])
Out[47]:
year state pop
0 2000 Ohio 1.5
1 2001 Ohio 1.7
2 2002 Ohio 3.6
3 2001 Nevada 2.4
4 2002 Nevada 2.9
5 2003 Nevada 3.2
如果传入的列在数据中找不到,就会在结果中产生缺失值:
In [48]: frame2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],
....: index=['one', 'two', 'three', 'four',
....: 'five', 'six'])
In [49]: frame2
Out[49]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 NaN
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 NaN
five 2002 Nevada 2.9 NaN
six 2003 Nevada 3.2 NaN
In [50]: frame2.columns
Out[50]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
通过类似字典标记的方式或属性的方式,可以将 DataFrame 的列获取为一个 Series:
In [51]: frame2['state']
Out[51]:
one Ohio
two Ohio
three Ohio
four Nevada
five Nevada
six Nevada
Name: state, dtype: object
In [52]: frame2.year
Out[52]:
one 2000
two 2001
three 2002
four 2001
five 2002
six 2003
Name: year, dtype: int64
笔记:IPython 提供了类似属性的访问(即 frame2.year)和 tab 补全。frame2[column]适用于 任何列的名,但是 frame2.column 只有在列名是一个合理的 Python 变量名时才适用。 注意,返回的 Series 拥有原 DataFrame 相同的索引,且其 name 属性也已经被相应地设置好了。
行也可以通过位置或名称的方式进行获取,比如用loc
属性(稍后将对此进行详细讲解):
In [53]: frame2.loc['three']
Out[53]:
year 2002
state Ohio
pop 3.6
debt NaN
Name: three, dtype: object
列可以通过赋值的方式进行修改。例如,我们可以给那个空的”debt”列赋上一个标量值或一组值:
In [54]: frame2['debt'] = 16.5
In [55]: frame2
Out[55]:
year state pop debt
one 2000 Ohio 1.5 16.5
two 2001 Ohio 1.7 16.5
three 2002 Ohio 3.6 16.5
four 2001 Nevada 2.4 16.5
five 2002 Nevada 2.9 16.5
six 2003 Nevada 3.2 16.5
In [56]: frame2['debt'] = np.arange(6.)
In [57]: frame2
Out[57]:
year state pop debt
one 2000 Ohio 1.5 0.0
two 2001 Ohio 1.7 1.0
three 2002 Ohio 3.6 2.0
four 2001 Nevada 2.4 3.0
five 2002 Nevada 2.9 4.0
six 2003 Nevada 3.2 5.0
将列表或数组赋值给某个列时,其长度必须跟 DataFrame 的长度相匹配。如果赋值的是一个 Series,就会精确匹配 DataFrame 的索引,所有的空位都将被填上缺失值:
In [58]: val = pd.Series([-1.2, -1.5, -1.7], index=['two', 'four', 'five'])
In [59]: frame2['debt'] = val
In [60]: frame2
Out[60]:
year state pop debt
one 2000 Ohio 1.5 NaN
two 2001 Ohio 1.7 -1.2
three 2002 Ohio 3.6 NaN
four 2001 Nevada 2.4 -1.5
five 2002 Nevada 2.9 -1.7
six 2003 Nevada 3.2 NaN
为不存在的列赋值会创建出一个新列。关键字 del
用于删除列。作为 del 的例子,我先添加一个新的布尔值的列,state 是否为’Ohio’:
In [61]: frame2['eastern'] = frame2.state == 'Ohio'
In [62]: frame2
Out[62]:
year state pop debt eastern
one 2000 Ohio 1.5 NaN True
two 2001 Ohio 1.7 -1.2 True
three 2002 Ohio 3.6 NaN True
four 2001 Nevada 2.4 -1.5 False
five 2002 Nevada 2.9 -1.7 False
six 2003 Nevada 3.2 NaN False
注意:不能用 frame2.eastern 创建新的列。
del 方法可以用来删除这列:
In [63]: del frame2['eastern']
In [64]: frame2.columns
Out[64]: Index(['year', 'state', 'pop', 'debt'], dtype='object')
注意:通过索引方式返回的列只是相应数据的视图而已,并不是副本。因此,对返回的 Series 所做的任何就地修改全都会反映到源 DataFrame 上。通过 Series 的 copy 方法即可指定复制列。
另一种常见的数据形式是嵌套字典
:
In [65]: pop = {'Nevada': {2001: 2.4, 2002: 2.9},
....: 'Ohio': {2000: 1.5, 2001: 1.7, 2002: 3.6}}
如果嵌套字典传给 DataFrame,pandas 就会被解释为:外层字典的键作为列,内层键则作为行索引 :
In [66]: frame3 = pd.DataFrame(pop)
In [67]: frame3
Out[67]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
你也可以使用类似 NumPy 数组的方法,对 DataFrame 进行转置(交换行和列):
In [68]: frame3.T
Out[68]:
2000 2001 2002
Nevada NaN 2.4 2.9
Ohio 1.5 1.7 3.6
内层字典的键会被合并、排序以形成最终的索引。如果明确指定了索引,则不会这样:
In [69]: pd.DataFrame(pop, index=[2001, 2002, 2003])
Out[69]:
Nevada Ohio
2001 2.4 1.7
2002 2.9 3.6
2003 NaN NaN
由 Series 组成的字典差不多也是一样的用法:
In [70]: pdata = {'Ohio': frame3['Ohio'][:-1],
....: 'Nevada': frame3['Nevada'][:2]}
In [71]: pd.DataFrame(pdata)
Out[71]:
Nevada Ohio
2000 NaN 1.5
2001 2.4 1.7
下面列出了 DataFrame 构造函数所能接受的各种数据:

如果设置了 DataFrame 的 index 和 columns 的 name 属性,则这些信息也会被显示出来:
In [72]: frame3.index.name = 'year'; frame3.columns.name = 'state'
In [73]: frame3
Out[73]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
跟 Series 一样,values 属性也会以二维 ndarray 的形式返回 DataFrame 中的数据:
In [74]: frame3.values
Out[74]:
array([[ nan, 1.5],
[ 2.4, 1.7],
[ 2.9, 3.6]])
如果 DataFrame 各列的数据类型不同,则值数组的 dtype 就会选用能兼容所有列的数据类型:
In [75]: frame2.values
Out[75]:
array([[2000, 'Ohio', 1.5, nan],
[2001, 'Ohio', 1.7, -1.2],
[2002, 'Ohio', 3.6, nan],
[2001, 'Nevada', 2.4, -1.5],
[2002, 'Nevada', 2.9, -1.7],
[2003, 'Nevada', 3.2, nan]], dtype=object)
3索引对象
pandas 的索引对象负责管理轴标签和其他元数据(比如轴名称等)。构建 Series 或 DataFrame 时,所用到的任何数组或其他序列的标签都会被转换成一个 Index:
In [76]: obj = pd.Series(range(3), index=['a', 'b', 'c'])
In [77]: index = obj.index
In [78]: index
Out[78]: Index(['a', 'b', 'c'], dtype='object')
In [79]: index[1:]
Out[79]: Index(['b', 'c'], dtype='object')
Index 对象是不可变的,因此用户不能对其进行修改:
index[1] = 'd' # TypeError
不可变可以使 Index 对象在多个数据结构之间安全共享:
In [80]: labels = pd.Index(np.arange(3))
In [81]: labels
Out[81]: Int64Index([0, 1, 2], dtype='int64')
In [82]: obj2 = pd.Series([1.5, -2.5, 0], index=labels)
In [83]: obj2
Out[83]: 0 1.5 1 -2.5 2 0.0 dtype: float64
In [84]: obj2.index is labels
Out[84]: True
注意:虽然用户不需要经常使用 Index 的功能,但是因为一些操作会生成包含被索引化的数 据,理解它们的工作原理是很重要的。
除了类似于数组,Index 的功能也类似一个固定大小的集合:
In [85]: frame3
Out[85]:
state Nevada Ohio
year
2000 NaN 1.5
2001 2.4 1.7
2002 2.9 3.6
In [86]: frame3.columns
Out[86]: Index(['Nevada', 'Ohio'], dtype='object', name='state')
In [87]: 'Ohio' in frame3.columns
Out[87]: True
In [88]: 2003 in frame3.index
Out[88]: False
与 python 的集合不同,pandas 的 Index 可以包含重复的标签:
In [89]: dup_labels = pd.Index(['foo', 'foo', 'bar', 'bar'])
In [90]: dup_labels
Out[90]: Index(['foo', 'foo', 'bar', 'bar'], dtype='object')
选择重复的标签,会显示所有的结果。
每个索引都有一些方法和属性,它们可用于设置逻辑并回答有关该索引所包含的数据的常见问题。下面列出了这些函数:

4结尾
下节将介绍基本功能。

欢迎加入生信交流群。加我微信我也拉你进 微信群聊 老俊俊生信交流群
哦,数据代码已上传至QQ群,欢迎加入下载。
群二维码:
老俊俊微信:
知识星球:
所以今天你学习了吗?
欢迎小伙伴留言评论!
今天的分享就到这里了,敬请期待下一篇!
最后欢迎大家分享转发,您的点赞是对我的鼓励和肯定!
如果觉得对您帮助很大,赏杯快乐水喝喝吧!
往期回顾
◀python 学习之: 我的 GetTransTool 报错了
◀组会文献分享 — YTHDF2 加速 UBXN1 mRNA 的降解促进胶质瘤的恶性进展
◀python 提取基因非冗余 exon-5UTR-CDS-3UTR 长度
◀...
请关注“恒诺新知”微信公众号,感谢“R语言“,”数据那些事儿“,”老俊俊的生信笔记“,”冷🈚️思“,“珞珈R”,“生信星球”的支持!