RiboPlotR 优雅的可视化你的 Ribo-seq 数据
测试开头














测试结尾
love is gone

1引言
分享一个颜值在线的可视化 R 包:
文章:

轻松可视化 Ribo-seq 数据:


2安装
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("GenomicRanges")
BiocManager::install("GenomicFeatures")
BiocManager::install("GenomicAlignments")
BiocManager::install("rtracklayer")
BiocManager::install("Rsamtools")
#Install RiboPlotR
library(devtools)
install_github("hsinyenwu/RiboPlotR")
3输入文件

需要比对基因组的 bam 文件, gtf/gff 注释文件, P-site 坐标信息。
4可视化样式
有四种可视化方式:

5示例代码
# Load RiboPlotR and essential packages
library(RiboPlotR)
# Load example datasets
agtf <- system.file("extdata", "TAIR10.29_part.gtf", package = "RiboPlotR", mustWork = TRUE) #Annotation
ugtf <- system.file("extdata", "AT3G02468.gtf", package = "RiboPlotR", mustWork = TRUE) #uORF annotation
RRNA <- system.file("extdata", "Root_test_PE.bam", package = "RiboPlotR", mustWork = TRUE) #Root RNA-seq data
SRNA <- system.file("extdata", "Shoot_test_PE.bam", package = "RiboPlotR", mustWork = TRUE) #Shoot RNA-seq data
RRibo <- system.file("extdata", "riboRoot.bed", package = "RiboPlotR", mustWork = TRUE) #Root Ribo-seq data
SRibo <- system.file("extdata", "riboShoot.bed", package = "RiboPlotR", mustWork = TRUE) #Shoot Ribo-seq data
# Run gene.structure function to load gtf for annotated protein coding genes
gene.structure(annotation=agtf, format="gtf",dataSource="Araport",organism="Arabidopsis thaliana")
# Run uorf.structure to load uORF gtf
uorf.structure(uorf_annotation=ugtf, format="gtf",dataSource="Araport",organism="Arabidopsis thaliana")
# Run rna_bam.ribo to load root and shoot RNA-seq and Ribo-seq data sets
# Here root is the first dataset and shoot is the second dataset
rna_bam.ribo(Ribo1=RRibo,
RNAseqBam1=RRNA,
RNAlab1="RNA count",
Ribolab1="Ribo count",
S_NAME1="Root",
Ribo2=SRibo,
RNAseqBam2=SRNA,
RNAlab2="RNA count",
Ribolab2="Ribo count",
S_NAME2="Shoot",
RNAseqBamPaired="paired")
#Plot AT4G21910
PLOTc2("AT4G21910") #default using first isoform. The isoform used for plotting is marked in bold.

PLOTc2("AT4G21910",isoform=2)

给 ORF 高亮:
#Plot Root data (PLOTc uses the first RNA-seq and Ribo-seq dataset by default. Here the first dataset is the Root dataset.)
PLOTc("AT3G02470",uORF = "AT3G02468",NAME=" SAMDC")

绘制另外一个数据:
#Plot Shoot data (Here is an example how to plot the second dataset using PLOTc)
PLOTc("AT3G02470",uORF="AT3G02468",NAME=" SAMDC",RNAbam1 = RNAseqBam2, ribo1 = Ribo2, SAMPLE1 = "Shoot")

一起绘制:
#Plot both dataset wiht PLOTC2
PLOTc2("AT3G02470",uORF = "AT3G02468",NAME=" SAMDC",isoform=3)

RNA-seq 和 Ribo-seq 分开:
PLOTt2("AT3G02470",uORF = "AT3G02468",NAME=" SAMDC",isoform=3)

单个样本分开:
PLOTt("AT3G02470",uORF = "AT3G02468",NAME=" SAMDC",isoform=3)

6结尾
感兴趣的小伙伴可以去探索一下。

欢迎加入生信交流群。加我微信我也拉你进 微信群聊 老俊俊生信交流群
哦,数据代码已上传至QQ群,欢迎加入下载。
群二维码:
老俊俊微信:
知识星球:
所以今天你学习了吗?
今天的分享就到这里了,敬请期待下一篇!
最后欢迎大家分享转发,您的点赞是对我的鼓励和肯定!
如果觉得对您帮助很大,赏杯快乐水喝喝吧!
往期回顾
◀南京的春
◀..
请关注“恒诺新知”微信公众号,感谢“R语言“,”数据那些事儿“,”老俊俊的生信笔记“,”冷🈚️思“,“珞珈R”,“生信星球”的支持!