• 主页
  • 课程

    关于课程

    • 课程归档
    • 成为一名讲师
    • 讲师信息
    同等学历教学

    同等学历教学

    免费
    阅读更多
  • 特色
    • 展示
    • 关于我们
    • 问答
  • 事件
  • 个性化
  • 博客
  • 联系
  • 站点资源
    有任何问题吗?
    (00) 123 456 789
    weinfoadmin@weinformatics.cn
    注册登录
    恒诺新知
    • 主页
    • 课程

      关于课程

      • 课程归档
      • 成为一名讲师
      • 讲师信息
      同等学历教学

      同等学历教学

      免费
      阅读更多
    • 特色
      • 展示
      • 关于我们
      • 问答
    • 事件
    • 个性化
    • 博客
    • 联系
    • 站点资源

      R语言

      • 首页
      • 博客
      • R语言
      • 【数据分析】What will the Future of Data Analytics Look Like?

      【数据分析】What will the Future of Data Analytics Look Like?

      • 发布者 weinfoadmin
      • 分类 R语言
      • 日期 2016年7月24日
      测试开头

      The era of big data has witnessed a paradigm shift into analytics. Today, it’s no longer sufficient to simply gather data from social media, IoT, and wearable devices, and be unable to manage or filter it. It is more about delivering the right data to the right person, at the right time.

      This trend is growing crucial as data is multiplying every day and pouring in from various devices and smart machines including wearables, electronic gadgets, and other devices. Such factors call for the treatment of vast pools of structured and unstructured data with care and precision. This is precisely where invisible analytics come in.

      【数据分析】What will the Future of Data Analytics Look Like?

      Big Data was the Past; 2015 is the Start Point to Take Analytics to the Next Level

      By far, big data has remained as an enabler of the new wave of analytics solutions. However, the challenge for big data analytics lies in the traditional hardware storage capacity and processing rates that execrably lag during operations, thus becoming inefficient in supporting the demand for handling large amounts of data.

      As we look into the future, more products and technologies are leaning towards what can be possibly done with the large amounts of data that is already present, without the need of harvesting more data. This time, analytics will be the enabler. Market experts predict that analytics will become deeply, but invisibly embedded everywhere. The increasing invisibility in analytics is in the same breath as the growth of the volume of data and the rising trend toward embedded business intelligence (BI).

      Pervasive BI is gaining immense traction these days. The adoption rates of BI hover at approximately 30 percent in a typical business or enterprise environment.

      The Future is All about Advanced, Pervasive, and Invisible Analytics

      Analytics will continue to grow due to the Internet of Things (IoT), creating large pools of data. Analytics will be deeply embedded and virtually invisible in the coming years. It will be the major highlight in the future as the volume of data generated by various embedded systems is rapidly increasing. Every application will need to be an analytic application and the value will be in the answers, not the data.

      With the help of advanced analytics techniques such as natural language processing, data mining, text analytics, statistics, predictive analytics, and machine learning, organizations will utilize big data analytics and similar analytical tools to gain deeper insights and make significantly better business decisions.

      The Question is – Is this the Year of Hadoop?

      Hadoop is an open source software platform that provides quick and reliable analysis of both structured and unstructured data. Given its capabilities to wield large data sets for scalable distributed computing, Hadoop is often associated with the phrase ‘big data’.

      Hadoop has been the highlight for the past couple of years and is further projected to be the biggest attraction this year. Spread across Asia, Europe, and other parts of the world as an effective breakthrough, Hadoop’s ability doesn’t only lie in leveraging powerful analytics tools, but also in sifting through an avalanche of data and understanding big customer data.

      Nevertheless, not many market predictions say that Hadoop will realize its huge potential through 2015. Some of the most cited reasons that are pinning down the growth of Hadoop are its ‘security concern issues’, ‘potential stability concerns’, and ‘not fit for small data’. While many research companies and analysts are still readjusting their thinking regarding the level of maturity Hadoop is expected to achieve, the need for an advanced platform during this hiatus is much needed to realize the big data dream.

      Customer experience is growing beyond tracking details, turning into a more responsive environment based on data input. Moreover, many new applications today are trying to answer the ‘what more?’ question and creating new avenues to explore the factors driving deep analytics.

      原文链接:http://www.datasciencecentral.com/profiles/blogs/what-will-the-future-of-data-analytics-look-like

      数据人网是数据人学习、交流和分享的平台http://shujuren.org 。专注于从数据中学习。
      平台的理念:人人投稿,知识共享;人人分析,洞见驱动;智慧聚合,普惠人人。
      您在数据人网平台,可以1)学习数据知识;2)创建数据博客;3)认识数据朋友;4)寻找数据工作;5)其它与数据相关的干货。
      我们努力坚持做原创,分享和传播数据知识干货!!
      我们都是数据人,数据是有价值的,坚定不移地利用数据价值创造价值!
      数据资料、数据课程、数据圈子、数据工作和数据项目服务,请加微信:
      luqin360

      【数据分析】What will the Future of Data Analytics Look Like?

      分享和传播数据科学知识。

      数据人网,精选推荐:

      《10 Machine Learning Online Courses For Beginners》

      点击阅读原文,即刻进入数据人网。


      测试结尾

      请关注“恒诺新知”微信公众号,感谢“R语言“,”数据那些事儿“,”老俊俊的生信笔记“,”冷🈚️思“,“珞珈R”,“生信星球”的支持!

      • 分享:
      作者头像
      weinfoadmin

      上一篇文章

      【工作帮】诚聘数据相关人才
      2016年7月24日

      下一篇文章

      体验全球数据新闻大会,首届数据与媒介发展论坛,等你来!|数据人活动
      2016年7月25日

      你可能也喜欢

      3-1665801675
      R语言学习:重读《R数据科学(中文版)》书籍
      28 9月, 2022
      6-1652833487
      经典铁死亡,再出新思路
      16 5月, 2022
      1-1651501980
      R语言学习:阅读《R For Everyone 》(第二版)
      1 5月, 2022

      搜索

      分类

      • R语言
      • TCGA数据挖掘
      • 单细胞RNA-seq测序
      • 在线会议直播预告与回放
      • 数据分析那些事儿分类
      • 未分类
      • 生信星球
      • 老俊俊的生信笔记

      投稿培训

      免费

      alphafold2培训

      免费

      群晖配置培训

      免费

      最新博文

      Nature | 单细胞技术揭示衰老细胞与肌肉再生
      301月2023
      lncRNA和miRNA生信分析系列讲座免费视频课和课件资源包,干货满满
      301月2023
      如何快速批量修改 Git 提交记录中的用户信息
      261月2023
      logo-eduma-the-best-lms-wordpress-theme

      (00) 123 456 789

      weinfoadmin@weinformatics.cn

      恒诺新知

      • 关于我们
      • 博客
      • 联系
      • 成为一名讲师

      链接

      • 课程
      • 事件
      • 展示
      • 问答

      支持

      • 文档
      • 论坛
      • 语言包
      • 发行状态

      推荐

      • iHub汉语代码托管
      • iLAB耗材管理
      • WooCommerce
      • 丁香园论坛

      weinformatics 即 恒诺新知。ICP备案号:粤ICP备19129767号

      • 关于我们
      • 博客
      • 联系
      • 成为一名讲师

      要成为一名讲师吗?

      加入数以千计的演讲者获得100%课时费!

      现在开始

      用你的站点账户登录

      忘记密码?

      还不是会员? 现在注册

      注册新帐户

      已经拥有注册账户? 现在登录

      close
      会员购买 你还没有登录,请先登录
      • ¥99 VIP-1个月
      • ¥199 VIP-半年
      • ¥299 VIP-1年
      在线支付 激活码

      立即支付
      支付宝
      微信支付
      请使用 支付宝 或 微信 扫码支付
      登录
      注册|忘记密码?